Approximations of pseudo-Boolean functions; applications to game theory

نویسندگان

  • Peter L. Hammer
  • Ron Holzman
چکیده

This paper studies the approximation of pseudo-Boolean functions by linear functions and more generally by functions of (at most) a specified degree. Here a pseudo-Boolean function means a real valued function defined on {0, 1} n, and its degree is that of the unique multilinear polynomial that expresses it; linear functions are those of degree at most one. The approximation consists in choosing among all linear functions the one which is closest to a given function, where distance is measured by the Euclidean metric on R 2n. A characterization of the best linear approximation is obtained in terms of the average value of the function and its first derivatives. This leads to an explicit formula for computing the approximation from the polynomial expression of the given function. These results are later generalized to handle approximations of higher degrees, and further results are obtained regarding the interaction of approximations of different degrees. For the linear case, a certain constrained version of the approximation problem is also studied. Special attention is given to some important properties of pseudo-Boolean functions and the extent to which they are preserved in the approximation. A separate section points out the relevance of linear approximations to game theory and shows that the well known Banzhaf power index and Shapley value are obtained as best linear approximations of the game (each in a suitably defined sense). Approximation erhalten bleiben. Ein weiterer Abschnitt zeigt die Relevanz linearer Approximationen in der Spieltheorie auf und zeigt Verbindungen zwischen den hier erzielten Ergebnissen und dem wohlbekannten Banzhaf Index auf.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric approximations of pseudo-Boolean functions with applications to influence indexes

We consider the approximation problem of a pseudo-Boolean function by a symmetric pseudo-Boolean function in the sense of weighted least squares. We give explicit expressions for the approximation and provide interpretations and properties of its L-statistic representation. We also discuss applications of these expressions in cooperative game theory and engineering reliability.

متن کامل

The influence of variables on pseudo-Boolean functions with applications to game theory and multicriteria decision making

The power of players in a collective decision process is a central issue in game theory. For this reason, the concept of influence of players on a simple game has been introduced. More generally, the influence of variables on Boolean functions has been defined and studied. We extend this concept to pseudo-Boolean functions, thus making it possible to appraise the degree of influence of any coal...

متن کامل

ON THE FUZZY SET THEORY AND AGGREGATION FUNCTIONS: HISTORY AND SOME RECENT ADVANCES

Several fuzzy connectives, including those proposed by Lotfi Zadeh, can be seen as linear extensions of the Boolean connectives from the scale ${0,1}$ into the scale $[0,1]$. We discuss these extensions, in particular, we focus on the dualities arising from the Boolean dualities. These dualities allow to transfer the results from some particular class of extended Boolean functions, e.g., from c...

متن کامل

Influence and interaction indexes for pseudo-Boolean functions: a unified least squares approach

The Banzhaf power and interaction indexes for a pseudo-Boolean function (or a cooperative game) appear naturally as leading coefficients in the standard least squares approximation of the function by a pseudo-Boolean function of a specified degree. We first observe that this property still holds if we consider approximations by pseudo-Boolean functions depending only on specified variables. We ...

متن کامل

Fuzzy Measures and Integrals: Recent Developments

This paper gives a survey of the research done on fuzzy measures and integrals since Sugeno proposed in 1974 the concept of fuzzy measure, with an emphasis on recent results. This field of research lies at the intersection of several independent domains, which makes it very active and attractive, namely, measure theory, theory of aggregation functions, cooperative game theory, combinatorial opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ZOR - Meth. & Mod. of OR

دوره 36  شماره 

صفحات  -

تاریخ انتشار 1992